Summary In-situ upgrading process (IUP) is an attractive technology for developing unconventional extraheavy-oil reserves. Decisions are generally made on field-scale economics evaluated with dedicated commercial tools. However, it is difficult to conduct an automated IUP optimization process because of unavailable interface between the economic evaluator and commercial simulator/optimizer, and because IUP is such a highly complex process that full-field simulations are generally not feasible. In this paper, we developed an efficient optimization work flow by addressing three technical challenges for field-scale IUP developments. The first challenge was deriving an upscaling factor modeled after analytical superposition formulation; proposing an effective method of scaling up simulation results and economic terms generated from a single-pattern IUP reservoir-simulation model to field scale; and validating this approach numerically. The second challenge was proposing a response-surface model (RSM) of field economics to analytically compute key field economical indicators, such as net present value (NPV), by use of only a few single-pattern economic terms together with the upscaling factor, and validating this approach with a commercial tool. The proposed RSM approach is more efficient, accurate, and convenient because it requires only 15–20 simulation cases as training data, compared with thousands of simulation runs required by conventional methods. The third challenge is developing a new optimization method with many attractive features: well-parallelized, highly efficient and robust, and with a much-wider spectrum of applications than gradient-based or derivative-free methods, applicable to problems without any derivative, with derivatives available for some variables, or with derivatives available for all variables. This work flow allows us to perform automated field IUP optimizations by maximizing a full-field economics target while honoring all field-level facility constraints effectively. We have applied the work flow to optimize the IUP development of a carbonate heavy-oil asset. Our results show that the approach is robust and efficient, and leads to development options with a significantly improved field-scale NPV. This work flow can also be applied to other kinds of pattern-based field developments of shale gas and oil, and thermal processes such as steamdrive or steam-assisted gravity drainage.
Read full abstract