BackgroundPancreatic cancer is a common digestive system cancer and one of the most lethal malignancies worldwide. Ataxin-3 (ATXN3) protein is a deubiquitinating enzyme implicated in the occurrence of diverse human cancers. The potential role of ATXN3 in pancreatic cancer still remains unclear. MethodsATXN3 was screened from differentially-upregulated genes of GSE71989, GSE27890 and GSE40098 datasets. The mRNA and protein levels of ATXN3 was evaluated in pancreatic cancer samples and cell lines. Through the gain- and loss-of-function experiments, the effects of ATXN3 on cell proliferation, migration and invasion were evaluated using cell counting kit-8 (CCK-8), 5-ethynyl-2′-deoxyuridine (EdU) staining, wound healing and Transwell assays. Subsequently, the interaction between ATXN3 and HDAC6 was confirmed using double immunofluorescence staining, co-immunoprecipitation (co-IP) and proximity ligation assay (PLA). The underlying mechanism of ATXN3 was determined by knockdown of HDAC6 in ATXN3-upregulated pancreatic cancer cells. The function of ATXN3 in vivo was verified through xenograft assay. ResultsHigh expression of ATXN3 was found in pancreatic cancer tissues. Increased ATXN3 expression dramatically promoted cell proliferation, migration, and invasion. The malignant phenotypes were suppressed in ATXN3-silenced pancreatic cancer cells. ATXN3 was proved to interact with HDAC6 and regulate its degradation through deubiquitination. Downregulation of HDAC6 inhibited ATXN3-induced development of pancreatic cancer cells through regulating the expression of PCNA, vimentin and E-cadherin. ATXN3 facilitated tumor growth of pancreatic cancer and increased HDAC6 expression in vivo. ConclusionsThis study confirmed that ATXN3 facilitated malignant phenotypes of pancreatic cancer via reducing the ubiquitination of HDAC6.
Read full abstract