We aimed to evaluate the effect of deep learning-based reconstruction (DLR) on high-spatial-resolution three-dimensional T2-weighted fast asymmetric spin-echo (HR-3D T2-FASE) imaging in the preoperative evaluation of cerebellopontine angle (CPA) tumors. This study included 13 consecutive patients who underwent preoperative HR-3D T2-FASE imaging using a 3T MRI scanner. The reconstruction voxel size of HR-3D T2-FASE imaging was 0.23 × 0.23 × 0.5mm. The contrast-to-noise ratios (CNRs) of the structures were compared between HR-3D T2-FASE images with and without DLR. The observers' preferences based on four categories on the tumor side on HR-3D T2-FASE images were evaluated. The facial nerve in relation to the tumor on HR-3D T2-FASE images was assessed with reference to intraoperative findings. The mean CNR between the tumor and trigeminal nerve and between the cerebrospinal fluid and trigeminal nerve was significantly higher for DLR images than non-DLR-based images (14.3 ± 8.9 vs. 12.0 ± 7.6, and 66.4 ± 12.0 vs. 53.9 ± 8.5, P < 0.001, respectively). The observer's preference for the depiction and delineation of the tumor, cranial nerves, vessels, and location relation on DLR HR-3D T2FASE images was superior to that on non-DLR HR-3D T2FASE images in 7 (54%), 6 (46%), 6 (46%), and 6 (46%) of 13 cases, respectively. The facial nerves around the tumor on HR-3D T2-FASE images were visualized accurately in five (38%) cases with DLR and in four (31%) without DLR. DLR HR-3D T2-FASE imaging is useful for the preoperative assessment of CPA tumors.