When selecting fillers to include in a police lineup, one must consider the level of similarity between the suspect and potential fillers. In order to reduce misidentifications, an innocent suspect should not stand out. Therefore, it is important that the fillers share some degree of similarity. Importantly, increasing suspect–filler similarity too much will render the task too difficult reducing correct identifications of a guilty suspect. Determining how much similarity yields optimal identification performance is the focus of the proposed study. Extant research on lineup construction has provided somewhat mixed results. In part, this is likely due to the subjective nature of similarity, which forces researchers to define similarity in relative terms. In the current study, we manipulate suspect–filler similarity via a multidimensional scaling model constructed using objective facial measurements. In doing so, we test the “propitious heterogeneity” and the diagnostic-feature-detection hypotheses which predict an advantage of lineups with low-similarity fillers in terms of discriminability. We found that filler similarity did not affect discriminability. We discuss limitations and future directions.