This study focused on the evolution of growth front about AlN growth on nano-patterned sapphire substrate by metal-organic chemical vapor deposition. The substrate with concave cones was fabricated by nano-imprint lithography and wet etching. Two samples with different epitaxy procedures were fabricated, manifesting as two-dimensional growth mode and three-dimensional growth mode, respectively. The results showed that growth temperature deeply influenced the growth modes and thus played a critical role in the coalescence of AlN. At a relatively high temperature, the AlN epilayer was progressively coalescence and the growth mode was two-dimensional. In this case, we found that the inclined semi-polar facets arising in the process of coalescence were type. But when decreasing the temperature, the semi-polar facets arose, leading to inverse pyramid morphology and obtaining the three-dimensional growth mode. The 3D inverse pyramid AlN structure could be used for realizing 3D semi-polar UV-LED or facet-controlled epitaxial lateral overgrowth of AlN.