Face recognition plays an important role in many robotic and human–computer interaction systems. To this end, in recent years, sparse-representation-based classification and its variants have drawn extensive attention in compress sensing and pattern recognition. For image classification, one key to the success of a sparse-representation-based approach is to extract consistent image feature representations for the images of the same subject captured under a wide spectrum of appearance variations, for example, in pose, expression and illumination. These variations can be categorized into two main types: geometric and textural variations. To eliminate the difficulties posed by different appearance variations, the article presents a new collaborative-representation-based face classification approach using deep aligned neural network features. To be more specific, we first apply a facial landmark detection network to an input face image to obtain its fine-grained geometric information in the form of a set of 2D facial landmarks. These facial landmarks are then used to perform 2D geometric alignment across different face images. Second, we apply a deep neural network for facial image feature extraction due to the robustness of deep image features to a variety of appearance variations. We use the term deep aligned features for this two-step feature extraction approach. Last, a new collaborative-representation-based classification method is used to perform face classification. Specifically, we propose a group dictionary selection method for representation-based face classification to further boost the performance and reduce the uncertainty in decision-making. Experimental results obtained on several facial landmark detection and face classification data sets validate the effectiveness of the proposed method.
Read full abstract