The enhanced N1 component in event-related potentials (ERP) to face stimuli, termed N170, is considered to indicate the structural encoding of faces. Previously, individual differences in the latency of the N170 have been related to face and object cognition abilities. By orthogonally manipulating content domain (faces vs objects) and task demands (easy/speed vs difficult/accuracy) in both psychometric and EEG tasks, we investigated the uniqueness of the processes underlying face cognition as compared with object cognition and the extent to which the N1/N170 component can explain individual differences in face and object cognition abilities. Data were recorded from N = 198 healthy young adults. Structural equation modeling (SEM) confirmed that the accuracies of face perception (FP) and memory are specific abilities above general object cognition; in contrast, the speed of face processing was not differentiable from the speed of object cognition. Although there was considerable domain-general variance in the N170 shared with the N1, there was significant face-specific variance in the N170. The brain–behavior relationship showed that faster face-specific processes for structural encoding of faces are associated with higher accuracy in both perceiving and memorizing faces. Moreover, in difficult task conditions, qualitatively different processes are additionally needed for recognizing face and object stimuli as compared with easy tasks. The difficulty-dependent variance components in the N170 amplitude were related with both face and object memory (OM) performance. We discuss implications for understanding individual differences in face cognition.
Read full abstract