Flexible wearable optoelectronic devices fabricated from organic-inorganic hybrid perovskites significantly accelerate the development of portable energy, biomedicine, and sensing fields, but their poor thermal stability hinders further applications. Conversely, all-inorganic perovskites possess excellent thermal stability, but black-phase all-inorganic perovskite film usually requires high-temperature annealing steps, which increases energy consumption and is not conducive to the fabrication of flexible wearable devices. In this work, an unprecedented low-temperature fabrication of stable black-phase CsPbI3 perovskite films is demonstrated by the in situ hydrolysis reaction of diphenylphosphinic chloride additive. The released diphenyl phosphate and chloride ions during the hydrolysis reaction significantly lower the phase transition temperature and effectively passivate the defects in the perovskite films, yielding high-performance photodetectors with a responsivity of 42.1A W-1 and a detectivity of 1.3 × 1014Jones. Furthermore, high-fidelity image and photoplethysmography sensors are demonstrated based on the fabricated flexible wearable photodetectors. This work provides a new perspective for the low-temperature fabrication of large-area all-inorganic perovskite flexible optoelectronic devices.
Read full abstract