Alcohol use, which alters the epigenome, increases the probability that it could affect subsequent generations, even if they were never directly exposed to ethanol or even in utero.We explored the effects of parental ethanol exposure before conception on behavioral changes in the offspring. Considering the role of Monoamine oxidase-B (MAO-B) in dopamine turnover in the prefrontal cortex (PFC) and its influence on behavior, and taking into account that ethanol exposure could alter MAO-B, we assessed the protein levels in the offspring.Male and female rats were exposed to ethanol for 30 days and then allowed ten days of abstinence. Afterward, they were mated with either control or ethanol-exposed rats. The F1 and F2 male offspring underwent tests to assess behavioral changes. Additionally, the levels of MAO-B in the PFC were evaluated.Results revealed that in the F1, anxiety increased only in the bi-parental ethanol-exposed male offspring in the elevated plus maze test (p < 0.05), while depressive-like behavior rose only in maternal and bi-parental ethanol-exposed offspring (p < 0.01). However, compulsive-like behavior increased in all ethanol-exposed offspring (p < 0.01). No significant phenotypic changes were observed in the F2. The levels of MAO-B in the PFC increased in the maternal (p < 0.05) and bi-parental ethanol-exposed offspring (p < 0.01).Our study demonstrates that parental ethanol exposure, even in the days preceding mating, adversely affects behaviors and induces molecular changes in the brain. Given these findings, it becomes imperative to monitor children exposed to parental (especially maternal) ethanol for the prevention of mental disorders.
Read full abstract