18 F-FDG PET quantitative features are susceptible to respiratory motion. However, studies using clinical patient data to explore the impact of respiratory motion on 18 F-FDG PET radiomic features are limited. In this study, we investigated the impact of respiratory motion on radiomics stability with clinical 18 F-FDG PET images using a data-driven gating (DDG) algorithm on the digital PET scanner. A total of 101 patients who underwent oncological 18 F-FDG PET scans were retrospectively included. A DDG algorithm combined with a motion compensation technique was used to extract the PET images with respiratory motion correction. 18 F-FDG-avid lesions from the thorax to the upper abdomen were analyzed on the non-DDG and DDG PET images. The lesions were segmented with a 40% threshold of the maximum standardized uptake. A total of 725 radiomic features were computed from the segmented lesions, including first-order, shape, texture, and wavelet features. The intraclass correlation coefficient (ICC) and coefficient of variation (COV) were calculated to evaluate feature stability. An ICC above 0.9 and a COV below 5% were considered high stability. In total, 168 lesions with and without respiratory motion correction were analyzed. Our results indicated that most 18 F-FDG PET radiomic features are sensitive to respiratory motion. Overall, only 27 out of 725 (3.72%) radiomic features were identified as highly stable, including one from the first-order features (entropy), one from the shape features (sphericity), four from the gray-level co-occurrence matrix features (normalized and unnormalized inverse difference moment, joint entropy, and sum entropy), one from the gray-level run-length matrix features (run entropy), and 20 from the wavelet filter-based features. Respiratory motion has a significant impact on 18 F-FDG PET radiomics stability. The highly stable features identified in our study may serve as potential candidates for further applications, such as machine learning modeling.
Read full abstract