In a previous study, we demonstrated that CHL1, the neuronal cell adhesion molecule close homolog of L1, acts as a tumor suppressor in human neuroblastoma (NB), a still highly lethal childhood malignancy, influencing its differentiation and proliferation degree. Here we found that ezrin, one of the ERM (ezrin, radixin, moesin) proteins involved in cytoskeleton organization, strongly interacts with CHL1. The low expression of EZRIN, as well as the low expression of CHL1 and of the neuronal differentiation marker MAP2, correlates with poor outcome in NB patients. Knock-down of ezrin in HTLA-230 cell line induces neurite retraction, enhances cell proliferation and migration, and triggers anchorage-independent growth, with effects very similar to those already obtained by CHL1 silencing. Furthermore, lack of ezrin inhibits the expression of MAP2 and of the oncosuppressor molecule p53, whereas it enhances MAPK activation, all typical features of tumor aggressiveness. As already described, CHL1 overexpression in IMR-32 cell line provokes an opposite trend, but the co-silencing of ezrin reduces these effects, confirming the hypothesis that CHL1 acts in close connection with ezrin. Overall, our data show that ezrin reinforces the differentiating and oncosuppressive functions of CHL1, identifying this ERM protein as a new targetable molecule for NB therapy.