Objective:Distractions inordinately impair attention in children with Attention-Deficit Hyperactivity Disorder (ADHD) but examining this behavior under real-life conditions poses a challenge for researchers and clinicians. Virtual reality (VR) technologies may mitigate the limitations of traditional laboratory methods by providing a more ecologically relevant experience. The use of eye-tracking measures to assess attentional functioning in a VR context in ADHD is novel. In this proof of principle project, we evaluate the temporal dynamics of distraction via eye-tracking measures in a VR classroom setting with 20 children diagnosed with ADHD between 8 and 12 years of age.Method:We recorded continuous eye movements while participants performed math, Stroop, and continuous performance test (CPT) tasks with a series of “real-world” classroom distractors presented. We analyzed the impact of the distractors on rates of on-task performance and on-task, eye-gaze (i.e., looking at a classroom whiteboard) versus off-task eye-gaze (i.e., looking away from the whiteboard).Results:We found that while children did not always look at distractors themselves for long periods of time, the presence of a distractor disrupted on-task gaze at task-relevant whiteboard stimuli and lowered rates of task performance. This suggests that children with attention deficits may have a hard time returning to tasks once those tasks are interrupted, even if the distractor itself does not hold attention. Eye-tracking measures within the VR context can reveal rich information about attentional disruption.Conclusions:Leveraging virtual reality technology in combination with eye-tracking measures is well-suited to advance the understanding of mechanisms underlying attentional impairment in naturalistic settings. Assessment within these immersive and well-controlled simulated environments provides new options for increasing our understanding of distractibility and its potential impact on the development of interventions for children with ADHD.