Pupil detection techniques are an essential diagnostic technique in medical applications. Pupil detection becomes more complex because of the dynamic movement of the pupil region and it’s size. Eye-tracking is either the method of assessing the point of focus (where one sees) or the orientation of an eye relative to the head. An instrument used to control eye positions and eye activity is the eye tracker. As an input tool for human-computer interaction, eye trackers are used in research on the visual system, in psychology, psycholinguistics, marketing, and product design. Eye detection is one in all the applications in the image process. This is very important in human identification and it will improve today’s identification technique that solely involves the eye detection to spot individuals. This technology is still new, only a few domains are applying this technology as their medical system. The proposed work is developing an eye pupil detection method in real-time, stable, using an intensity labeling algorithm. The proposed hardware architecture is designed using the median filter, segmentation using the threshold process, and morphology to detect pupil shape. Finally, an intensity Labeling algorithm is done to locate an exact eye pupil region. A Real-time FPGA implementation is done by Altera Quartus II software with cyclone IV FPGA.