Abstract

3D video has recently seen a massive increase in exposure in our lives. However, differences between the viewing and shooting conditions for a film lead to disparities between the reformed media and the original three-dimensional effect, which cause severe visual fatigue to viewers and result in headaches and dizziness. In this paper, a series of image processing algorithms are introduced to overcome these problems. The image processing pipeline is composed of four steps, eye-pupil detection, stereo correspondence computation, saliency map generation, and 3D warping. Each step is implemented in an S3DS-3D rendering system and its time complexity is measured. From the results, it was found that real-time stereoscopic 3D rendering is impossible using only a software implementation because SIFT and optical flow calculation requires a significant amount of time. Therefore, these two algorithm blocks should be implemented with hardware acceleration. Fortunately, active research is being conducted on these issues and real-time processing is expected to become available soon for applications beyond full-HD TV screens. In addition, it was found that saliency map generation and 3D warping blocks also need to be implemented in hardware for full-HD display although they do not have significant time complexity compared to SIFT and optical flow algorithm blocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.