AbstractLight‐absorbing carbonaceous aerosols that dominate atmospheric aerosol warming over India remain poorly characterized. Here, we delve into UV‐visible‐IR spectral aerosol absorption properties at nine PAN‐India COALESCE network sites (Venkataraman et al., 2020, https://doi.org/10.1175/bams‐d‐19‐0030.1). Absorption properties were estimated from aerosol‐laden polytetrafluoroethylene filters using a well‐constrained technique incorporating filter‐to‐particle correction factors. The measurements revealed spatiotemporal heterogeneity in spectral intrinsic and extrinsic absorption properties. Absorption analysis at near‐UV wavelengths from carbonaceous aerosols at these regional sites revealed large near‐ultraviolet brown carbon absorption contributions from 21% to 68%—emphasizing the need to include these particles in climate models. Further, satellite‐retrieved column‐integrated absorption was dominated by surface absorption, which opens possibilities of using satellite measurements to model surface‐layer optical properties (limited to specific sites) at a higher spatial resolution. Both the satellite‐modeled and direct in‐situ absorption measurements can aid in validating and constraining climate modeling efforts that suffer from absorption underestimations and high uncertainties in radiative forcing estimates.
Read full abstract