Laser cladding has unique technical advantages, such as precise heat input control, excellent coating properties, and local selective cladding for complex shape parts, which is a vital branch of surface engineering. During the laser cladding process, the parts are subjected to extreme thermal gradients, leading to the formation of micro-defects such as cracks, pores, and segregation. These defects compromise the serviceability of the components. Ultrasonic vibration can produce thermal, mechanical, cavitation, and acoustic flow effects in the melt pool, which can comprehensively affect the formation and evolution for the microstructure of the melt pool and reduce the microscopic defects of the cladding layer. In this paper, the coupling model of temperature and flow field for the laser cladding of 45 steel 316L was established. The transient evolution laws of temperature and flow field under ultrasonic vibration were revealed from a macroscopic point of view. Based on the phase field method, a numerical model of dendrite growth during laser cladding solidification under ultrasonic vibration was established. The mechanism of the effect of ultrasonic vibration on the solidification dendrite growth during laser cladding was revealed on a mesoscopic scale. Based on the microstructure evolution model of the paste region in the scanning direction of the cladding pool, the effects of a static flow field and acoustic flow on dendrite growth were investigated. The results show that the melt flow changes the heat and mass transfer behaviors at the solidification interface, concurrently changing the dendrites’ growth morphology. The acoustic streaming effect increases the flow velocity of the melt pool, which increases the tilt angle of the dendrites to the flow-on side and promotes the growth of secondary dendrite arms on the flow-on side. It improves the solute distribution in the melt pool and reduces elemental segregation.
Read full abstract