Soluble transforming growth factor beta receptor 3 (sTGFBR3) antagonist is a new focus in the research and development of Alzheimer's disease (AD) drugs. Our previous studies have identified sTGFBR3 as a promising new target for AD, with few targeted antagonists identified. In this study, we performed structural modeling of sTGFBR3 using AlphaFold2, followed by high-throughput virtual screening and surface plasmon resonance assays. which collectively identified Xanthone as potential compounds for targeting sTGFBR3. After optimizing the sTGFBR3-Xanthone complex using molecular dynamics (MD) simulations, we prepared a series of novel Xanthone derivatives and evaluated their anti-inflammatory activity, toxicity, and structure-activity relationship in BV2 cell model induced by lipopolysaccharides (LPS) or APP/PS1/tau mouse brain extract (BE). Several derivatives with the most potent anti-inflammatory activity were tested for blood-brain barrier permeability and sTGFBR3 affinity. Derivative P24, selected for its superior properties, was further evaluated in vitro. The results indicated that P24 increased the activation of TGF-β signaling and decreased the activation of IκBα/NF-κB signaling by targeting sTGFBR3, thereby regulating the inflammation-phagocytosis balance in microglia. Moreover, the low acute toxicity, long half-life, and low plasma clearance of P24 suggest that it can be sustained in vivo. This property may render P24 a more effective treatment modality for chronic diseases, particularly AD. The study demonstrates P24 serve as potential novel candidates for the treatment of AD via antagonizing sTGFBR3.
Read full abstract