The yield and quality of lipids extracted from microalgal biomass are critical factors in the production of microalgae-based biodiesel. The green microalga Chlorella homosphaera, isolated from Beira Lake, Colombo, Sri Lanka was employed in the present study to identify the effect of chlorophyll removal and cell disruption methods on lipid extraction yield, fatty acid methyl ester (FAME) profile and quality parameters of biodiesel; including cetane number (CN), iodine value (IV), degree of unsaturation (DU) and high heating value (HHV). In the first section of this study, chlorophyll was removed from dry microalgae biomass prior to lipid extraction. Through the analysis of FAME profiles, it was observed that chlorophyll removal yielded biodiesel of enhanced quality, albeit with a lipid loss of 44.2% relative to the control. In the second section of the study, mechanical cell disruption strategies including grinding, autoclaving, water bath heating and microwaving were employed to identify the most effective method to improve lipid recovery from chlorophyll-removed microalgae biomass. Autoclaving (121 °C, 20min sterilization time, total time 2h) was the most effective cell disruption technique of the methods tested, in terms of lipid extraction yield (39.80%) and also biodiesel quality. Moreover, it was observed that employing cell disruption subsequent to chlorophyll removal has a significant impact on the FAME profile of microalgae-based biodiesel, and consequently served to increase HHV and CN although IV and DU did not vary significantly.