Accurate prediction of soil properties is essential for sustainable land management and precision agriculture. This study presents an LSTM-CNN-Attention model that integrates temporal and spatial feature extraction with attention mechanisms to improve predictive accuracy. Utilizing the LUCAS soil dataset, the model analyzes spectral data to estimate key soil properties, including organic carbon (OC), nitrogen (N), calcium carbonate (CaCO3), and pH (in H2O). The Long Short-Term Memory (LSTM) component captures temporal dependencies, the Convolutional Neural Network (CNN) extracts spatial features, and the attention mechanism highlights critical information within the data. Experimental results show that the proposed model achieves excellent prediction performance, with coefficient of determination (R2) values of 0.949 (OC), 0.916 (N), 0.943 (CaCO3), and 0.926 (pH), along with corresponding ratio of percent deviation (RPD) values of 3.940, 3.737, 5.377, and 3.352. Both R2 and RPD values exceed those of traditional machine learning models, such as partial least squares regression (PLSR), support vector machine regression (SVR), and random forest (RF), as well as deep learning models like CNN-LSTM and Gated Recurrent Unit (GRU). Additionally, the proposed model outperforms S-AlexNet in effectively capturing temporal and spatial patterns. These findings emphasize the potential of the proposed model to significantly enhance the accuracy and reliability of soil property predictions by capturing both temporal and spatial patterns effectively.
Read full abstract