The surging demand for lithium, driven by the widespread adoption of electric vehicles and renewable energy storage systems, underscores the urgent need to develop sustainable lithium extraction methods. This study presents a comprehensive Life Cycle Assessment Using the TRACI method to evaluate and compare the environmental impacts of solvent extraction, adsorption, nanofiltration, and membrane electrolysis as direct lithium extraction methods for recovering lithium from brine to produce lithium carbonate. In terms of global warming, the carbon dioxide emission for each process was determined as follows: solvent extraction emits 52.7 kg CO2eq/kg of lithium carbonate, adsorption emits 47.9 CO2eq/kg of lithium carbonate, nanofiltration emits 17.7 kg CO2eq/kg of lithium carbonate, and membrane electrolysis emits 80.57 kg CO2eq/kg of lithium carbonate. As a result, the nanofiltration process emerges as the most environmentally friendly method, offering a promising solution to the environmental challenges of lithium extraction. In contrast, the membrane electrolysis process has the highest environmental impact.