In many algorithms the registration of image pairs is done by feature point matching. After the feature detection is performed, all extracted interest points are usually used for the registration process without further feature point distribution analysis. However, in the case of small and sparse sets of feature points of fixed size, suitable for real-time image mosaicking algorithms, a uniform spatial feature distribution across the image becomes relevant. Thus, in this paper we discuss and analyze algorithms which provide different spatial point distributions from a given set of SURF features. The evaluations show that a more uniform spatial distribution of the point matches results in lower image registration errors, and is thus more beneficial for fast image mosaicking algorithms.