AbstractCorn cobs consist primarily of a lignocellulosic material comprising hemicellulose, cellulose, and lignin in a crystalline state, which is resistant to microbial saccharification. Bioethanol production from corn cobs has rarely been attempted, especially using chemical pretreatment methods.The present study deals with the production and purification of fungal (Phanerochaete chrysosporium MTCC 787 and Pleurotus florida PAU 22‐01) extracellular ligninolytic enzymes – lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac) – followed by their utilization for the biological pretreatment of corn cobs along with saccharification using commercial cellulase. Crude LiP, MnP, and Lac demonstrated specific activity of 2.23, 2.1, and 2.63 U/mg, respectively.The one‐step purification of crude enzyme using diethyl amino ethyl (DEAE) cellulose ion exchange chromatography resulted in 11.3, 10.1 and 8.62‐fold purification of LiP, MnP and Lac activity, respectively, with corresponding specific activity of 25.1 U/mg (LiP), 21.2 U/mg (MnP) and 22.7 U/mg (Lac) in the partially purified ligninozymes. Using the latter, biological pretreatment of 2.5 g corn cobs in a reaction volume of 30 mL containing approximately 200 units of Lac, Lip and MnP enzymes (in phosphate buffer, pH 6) resulted in a maximum of 78.4% delignification with a saccharification efficiency of 97.1% using commercial cellulases.