Upon activation by vascular injury or extracellular agonists, platelets undergo rapid change shape, a process regulated by the actin cytoskeleton and accessory proteins. Platelet shape change is accompanied by the secretion of hemostatic factors and immunomodulatory cytokines from their intracellular granules, as well as the release of microvesicles (MVs) containing pro-inflammatory cytokines and procoagulant phosphatidylserine (PS). However, the role of actin dynamics in MV generation remains unclear. In this study, we found that blocking actin polymerization with cytochalasin D attenuated the release of PS-positive MVs in human platelets stimulated by thrombin or the calcium ionophore A23187. The actin-severing protein gelsolin (Gsn) facilitates normal actin filament turnover in activated platelets. Platelets from Gsn-deficient (Gsn−/−) mice showed reduced MV release compared to platelets from control mice. These findings indicate that the proper dynamics of the actin cytoskeleton are essential for MV generation in platelets, which has implications for their pro-inflammatory and procoagulant functions.
Read full abstract