Abstract

Distinct spatiotemporal Ca2+ signalling events regulate fundamental aspects of eukaryotic cell physiology. Complex Ca2+ signals can be driven by release of Ca2+ from intracellular organelles that sequester Ca2+ such as the ER (endoplasmic reticulum) or through the opening of Ca2+-permeable channels in the plasma membrane and influx of extracellular Ca2+. Late endocytic pathway compartments including late-endosomes and lysosomes have recently been observed to sequester Ca2+ to levels comparable with those found within the ER lumen. These organelles harbour ligand-gated Ca2+-release channels and evidence indicates that they can operate as Ca2+-signalling platforms. Lysosomes sequester Ca2+ to a greater extent than any other endocytic compartment, and signalling from this organelle has been postulated to provide ‘trigger’ release events that can subsequently elicit more extensive Ca2+ signals from stores including the ER. In order to investigate lysosomal-specific Ca2+ signalling a simple method for measuring lysosomal Ca2+ release is essential. In the present study we describe the generation and characterization of a genetically encoded, lysosomally targeted, cameleon sensor which is capable of registering specific Ca2+ release in response to extracellular agonists and intracellular second messengers. This probe represents a novel tool that will permit detailed investigations examining the impact of lysosomal Ca2+ handling on cellular physiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.