Glycine transporter 1 (GlyT1) mediates the termination of inhibitory glycinergic receptor signaling in the spinal cord and brainstem, and is also present diffusely in the forebrain. Here, it regulates the ambient glycine concentration and influences the ‘glycine’ site occupancy of N-methyl-d-aspartate receptors (NMDARs). GlyT1 is a reversible transporter with a substantial, but not excessive, sodium-motive force for uphill transport. This study investigates its role as a potential source of glycine supply, either by reverse uptake or heteroexchange. Indeed, glutamate alone does not induce NMDAR current in “naive” oocytes co-expressing GluN1/GluN2A and GlyT1, a previously characterized cellular model. However, after substantial intracellular glycine accumulation, GlyT1 reverses its transport mode, and begins to release glycine into the external compartment, allowing NMDAR activation by glutamate alone. These uptake-dependent glutamate currents were blocked by ALX-5407 and potentiated by sarcosine, a specific inhibitor and substrate of GlyT1, respectively, suggesting a higher occupancy of the co-agonist site when GlyT1 functions as a glycine source either by reversed-uptake or by heteroexchange. These two glycine release mechanisms can be distinguished by their voltage dependence, as the reversed-uptake cycle decreases at hyperpolarized potentials, whereas heteroexchange electroneutrality preserves glycine efflux and NMDAR activation at these potentials. These results establish GlyT1-mediated efflux as a positive regulator of NMDAR coagonist site occupancy, and demonstrate the efficacy of sarcosine heteroexchange in enhancing coagonist site occupancy. Because NMDAR facilitation by GlyT1-inhibitors and sarcosine relies on different transport mechanisms, their actions may be a source of variability in reversing NMDAR hypofunction in schizophrenia.