ObjectiveThis paper investigates the critical role of material thickness in freeze-dried pellets for enhancing the storage stability of encapsulated bacteria. Freeze dried material of varying thicknesses obtained from different annealing durations is quantified using Scanning Electron Microscopy (SEM) and X-ray microtomography (μCT), the material thickness is then correlated to the storage stability of the encapsulated cells.MethodsA formulation comprising of sucrose, maltodextrin, and probiotic cells is quenched in liquid nitrogen to form pellets. The pellets undergo different durations of annealing before undergoing freeze-drying. The material thickness is quantified using SEM and μCT. Storage stability in both oxygen-rich and oxygen-poor environments is evaluated by measuring CFU counts and correlated with the pellet structure.ResultsThe varying annealing protocols produce a range of material thicknesses, with more extensive annealing resulting in thicker materials. Storage stability exhibits a positive correlation with material thickness, indicating improved stability with thicker materials. Non-annealed pellets exhibit structural irregularities and inconsistent storage stability, highlighting the impracticality of avoiding annealing in the freeze-drying process.ConclusionsExtensive annealing not only enhances the storage stability of probiotic products but also provides greater control over the freeze-drying process, ensuring homogeneous and reproducible products. This study underscores the importance of material thickness in freeze-dried pellets for optimizing storage stability for probiotic formulations, and emphasize the necessity of annealing as a critical step in freeze-drying quenched pellets to achieve desired structural and stability outcomes.