We have developed a precise relative source location technique using acoustic emission doublets (AE doublets) in the triaxial hodogram method to evaluate the direction and distance of subsurface extension cracks. An AE doublet is a pair of acoustic emissions with similar waveforms and adjacent locations on the same crack but which occur at different times. The relative source location is estimated by an analysis in the frequency domain. The relative distance between two AE sources is determined from the difference of P-S arrival time delays by cross‐spectrum analysis. The relative direction is derived using a spectral matrix from the difference in P‐wave polarization directions. We also propose a method to optimize the estimated relative location by using a group of AE doublets. The accuracy of the estimated source location was confirmed by performing field experiments. The relative locations of artificial wave sources about 150 m from a triaxial detector can be estimated with distance errors of less than 1 m, and direction errors of less than 3.8 degrees in both azimuth and inclination. Results of the application of this analysis on AE doublets in a geothermal field demonstrate its ability to evaluate deeper subsurface fractures.