In this paper we study the fourth order differential equation $\frac{d^4u}{dt^4}+q\frac{d^2u}{dt^2}+u^3-u=0$d4udt4+qd2udt2+u3−u=0, which arises from the study of stationary solutions of the Extended Fisher–Kolmogorov equation. Denoting \documentclass[12pt]{minimal}\begin{document}$x=u,y=\frac{du}{dt},z=\frac{d^2u}{dt^2},v=\frac{d^3u}{dt^3}$\end{document}x=u,y=dudt,z=d2udt2,v=d3udt3 this equation becomes equivalent to the polynomial system \documentclass[12pt]{minimal}\begin{document}$\dot{x}=y,\dot{y} =z,\dot{z} =v,\dot{v}=x-qz-x^3$\end{document}ẋ=y,ẏ=z,ż=v,v̇=x−qz−x3 with \documentclass[12pt]{minimal}\begin{document}$(x,y,z,v)\in \mathbb {R}^4$\end{document}(x,y,z,v)∈R4 and \documentclass[12pt]{minimal}\begin{document}$q\in \mathbb {R}.$\end{document}q∈R. As usual, the dot denotes the derivative with respect to the time t. Since the system has a first integral we can reduce our analysis to a family of systems on \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^3.$\end{document}R3. We provide the global phase portrait of these systems in the Poincaré ball (i.e., in the compactification of \documentclass[12pt]{minimal}\begin{document}$\mathbb {R}^3$\end{document}R3 with the sphere \documentclass[12pt]{minimal}\begin{document}$\mathbb {S}^2$\end{document}S2 of the infinity).
Read full abstract