For a comprehensive assessment of the management decisions quality, it is necessary to take into account heterogeneous information presented both in numerical form and in natural language expressions. The effective occurs the use of data mining including neural network clustering and fuzzy set theory. The article presents our approach to the use of these methods for evaluating risks and the management decisions quality in Russian higher education on the example of the implementation of the most ambitious Project 5-100 for it. On the example, the expediency of the neural network clustering to assess the possibility of achieving the goals of any such large-scale project has been proved. Clustering the information database used for the analysis, makes it possible to carry out an objective selection of candidate universities-candidates for the right to receive state subsidies, as well as to adjust the composition of the Project participants. Another methods of intellectual analysis – the construction of a complex of fuzzy inference systems, – confirmed the possibility of a quantitative fi evaluating of the project based on the expert verbal estimates of the project. At the same time, the neural network clustering initially illustrated the unattainability of the Project 5-100 goals. The use of a complex of fuzzy inference systems confirmed this statement by the very low quantitative final assessment of the project on the basis of verbal expert opinions.