RhoB, a member of the Rho GTPase family, has been implicated in the malignant progression of various cancer types. However, its role in cervical cancer (CC) remains unclear. Therefore, this study aims to elucidate the biological function of RhoB in CC and its relationship with cisplatin sensitivity. We analyzed data from the TCGA, GTEx, and GEO databases, revealing that RhoB mRNA expression is downregulated in CC tissues compared to normal cervical tissues. The further analysis of the TCGA database and Tongji samples showed that CC patients with a high RhoB expression had a shorter overall survival (OS). Subsequently, we found that the knockdown of RhoB inhibited the proliferation, migration, and invasion of cancer cells, while increasing apoptosis. Through Western blot (WB) analysis, we found that knocking down RhoB resulted in an increased expression of the epithelial marker E-cadherin, while the levels of N-cadherin, MMP2, MMP9, Vimentin, and Snail1 were reduced. Additionally, RhoB mRNA expression was upregulated in CC tissues after chemotherapy compared to CC tissues before chemotherapy. In CC cells, RhoB expression increased with cisplatin concentration, and the IC50 value decreased following RhoB knockdown. Moreover, the knockdown of RhoB could enhance the cellular apoptosis triggered by cisplatin. This study demonstrated that RhoB plays an oncogenic role in CC and that its knockdown could enhance the sensitivity of CC cells to cisplatin.