Kaempferol has been reported to act as an anti-inflammatory agent in LPS-induced neuroinflammation in vitro and in vivo, but its role in the inflammation after cerebral ischemia/reperfusion (I/R) is unclear. The present study was to investigate the effect of kaempferol on inflammation in ischemic brain tissue and explore its mechanisms in cerebral I/R rats. Cerebral I/R rat model was established by middle cerebral artery occlusion for 60 min and following reperfusion. Kaempferol at doses of 25, 50 and 100 mg/kg was administered for 7 days after cerebral I/R. Kaempferol treatment significantly reduced cerebral infarct volume, attenuated inflammation and blood-brain barrier (BBB) disruption after cerebral I/R, thus improved neurological outcomes at the day 7 after cerebral I/R. Furthermore, the results also showed kaempferol treatment decreased the phosphorylation and nuclear transposition of transcription factor NF-κB p65, thus inhibited expression of various pro-inflammatory proteins. In conclusion, kaempferol attenuates neuroinflammation and blood brain barrier dysfunction to improve neurological deficits in cerebral I/R rats, its mechanism is related to NF-κB pathway.