Headache and/or migraine, a common problem in pediatrics and internal medicine, affect about 5% to 10% children and adolescents, and nearly 30% of middle-aged women. Headache is also one of the most common clinical manifestations of acquired Toxoplasma gondii infection of the central nervous system (CNS) in immunosuppressed subjects. We present 11 apparently nonhuman immunodeficiency virus-infected children aged 7 to 17 years (8 girls, 3 boys) and 1 adult woman with recurrent severe headaches in whom latent chronic CNS T. gondii infection not manifested by enlarged peripheral lymph nodes typical for toxoplasmosis, was found. In 7 patients, the mean serum IgG Toxoplasma antibodies concentration was 189 +/- 85 (SD) IU/mL (range 89 to 300 IU/mL), and in 5 other subjects, the indirect fluorescent antibody test titer ranged from 1:40 to 1:5120 IU/mL (n= <1:10 IU/mL). Some of the patients suffered also from atopic dermatitis (AD) and were exposed to cat and/or other pet allergens, associated with an increased IL-4 and decreased IFN-gamma production. These cytokine irregularities caused limited control of cerebral toxoplasmosis probably because IL-4 down-regulated both the production of IFN-gamma and its activity, and stimulated production of a low NO-producing population of monocytes, which allowed cysts rupture, increased parasite multiplication and finally reactivation of T. gondii infection. The immune studies performed in 4 subjects showed a decreased percentage of T lymphocytes, increased total number of lymphocytes B and serum IgM concentration, and impaired phagocytosis. In addition, few of them had also urinary tract diseases known to produce IL-6 that can mediate immunosuppressive functions, involving induction of the anti-inflammatory cytokine IL-10. These disturbances probably resulted from the host protective immune reactions associated with the chronic latent CNS T. gondii infection/inflammation. This is consistent with significantly lower enzyme indoleamine 2,3-dioxygenase (IDO) activity reported in atopic than in nonatopic individuals, and an important role that IDO and tryptophan degradation pathways plays in both, the host resistance to T. gondii infection and its reactivation. Analysis of literature information on the subjects with different types of headaches caused by foods, medications, and other substances, may suggest that their clinical symptoms and changes in laboratory data result at least in part from interference of these factors with dietary tryptophan biotransformation pathways. Several of these agents caused headache attacks through enhancing NO production via the conversion of arginine to citrulline and NO by the inducible nitric oxide synthase enzyme, which results in the high-output pathway of NO synthesis. This increased production of NO is, however, quickly down-regulated by NO itself because this biomolecule can directly inactivate NOS, may inhibit Ia expression on IFN-gamma-activated macrophages, which would limit antigen-presenting capability, and block T-cell proliferation, thus decreasing the antitoxoplasmatic activity. Moreover, NO inhibits IDO activity, thereby suppressing kynurenine formation, and at least one member of the kynurenine pathway, 3-hydroxyanthranilic acid, has been shown to inhibit NOS enzyme activity, the expression of NOS mRNA, and activation of the inflammatory transcription factor, nuclear factor-kB. In addition, the anti-inflammatory cytokines IL-4 and IL-10, TGF-beta, and a cytokine known as macrophage deactivating factor, have been shown to directly modulate NO production, sometimes expressing synergistic activity. On the other hand, IL-4 and TGF-beta can suppress IDO activity in some cells, for example human monocytes and fibroblasts, which is consistent with metabolic pathways controlled by IDO being a significant contributor to the proinflammatory system. Also, it seems that idiopathic intracranial hypertension, pseudotumor cerebri, and aseptic meningitis, induced by various factors, may result from their interference with IDO and inducible nitric oxide synthase activities, endogenous NO level, and cytokine irregularities which finally affect former T. gondii status 2mo in the brain. All these biochemical disturbances caused by the CNS T. gondii infection/inflammation may also be responsible for the relationship found between neurologic symptoms, such as headache, vertigo, and syncope observed in apparently immunocompetent children and adolescents, and physical and psychiatric symptoms in adulthood. We therefore believe that tests for T. gondii should be performed obligatorily in apparently immunocompetent patients with different types of headaches, even if they have no enlarged peripheral lymph nodes. This may help to avoid overlooking this treatable cause of the CNS disease, markedly reduce costs of hospitalization, diagnosis and treatment, and eventually prevent developing serious neurologic and psychiatric disorders.