Brain aging is the leading risk factor for most neurodegenerative diseases and has been linked with high rates of neuron loss. Thus, identifying molecular mechanisms underlying neuron loss and pharmacological modulation may be of great importance for slowing or preventing age-related diseases. Herein, we investigated the roles of miR-92a, Akt, mTOR, and NF-κB in age-associated apoptosis in the hippocampus (a critical structure involved in brain aging) of male rats alone and in combination with prazosin. Twenty-four male Wistar rats were grouped into young control (3-month-old), aged (18-month-old), and aged + prazosin groups (n = 8 for each). Prazosin (1 mg/kg; i.p.) was administered for 4 weeks to aged rats. Apoptosis was detected by TUNEL staining. Western blot for Akt, mTOR, and NF-κB was conducted. miR-92a gene expression was performed by using RT-PCR. The results indicated a marked enhancement of apoptosis in the aging hippocampus. We also detected substantial up-regulation of NF-κB as well as substantial down-regulation of phosphorylated-Akt and mTOR in the aging hippocampus. Moreover, miR-92a gene expression was markedly reduced in the aging hippocampus. Treatment with prazosin significantly suppressed apoptosis and reversed miR-92a gene expression, as well as Akt, mTOR, and NF-κB protein expressions in the aging hippocampus. Considering the NF-κB regulatory role on miRNAs, our results suggest that NF-κB may be a negative transcriptional regulator of miR-92a, which in turn could regulate the Akt/mTOR signaling. In this regard, NF-κB upregulation may mediate the downregulation of miR-92a/Akt/mTOR axis, and thereby contribute to age-related neurodegeneration. This may provide a novel treatment target for delaying or preventing age-related problems.
Read full abstract