Hypoalbuminemia, associated with inflammation in severely ill patients, can emerge due to decreased albumin production. Transforming growth factor-beta (TGF-β) and nuclear factor-kappa B (NF-κB) are critical signaling pathways responsible for decreased albumin expression. This study explores the protein content and modulation effects of Striatin on albumin synthesis and inflammation, employing in silico proteomics and in vitro investigations. In the in silico proteomics realm, LC/MS-MS protein sequencing, 3D modeling, protein-protein docking simulations, 100 ns molecular dynamics (MD) simulations, and MM/PBSA binding free energy calculations were carried out. Complementing this, in vitro studies examined Albumin gene expression and extracellular secretion in HepG2 cells subjected to lipopolysaccharides-induced hypoalbuminemia. Furthermore, the study probed Striatin's influence on the NF-ᴋB expression, given albumin's role as a negative acute-phase protein. The results unveiled nucleoside diphosphate kinase (NdK) and parvalbumin (PV) as the prominent constituents within Striatin. Notably, NdK and PV exhibited the ability to disrupt hydrogen bonds with specific residues in both TGF-β and NF-κB complexes, thereby enhancing their flexibility, akin to the action of the FKBP12 complex (antagonist complex). In the in vitro experiments, Striatin demonstrated a dose and time-dependent inhibition of hypoalbuminemia, with peak efficacy observed at a concentration of 20 μg/mL. At this concentration, Striatin also suppressed NF-κB expression when co-incubated with lipopolysaccharides. While these findings suggest potential inhibitory effects of Striatin on TGF-β and NF-κB activities, they are preliminary and warrant further investigation. This study highlights Striatin's potential as a therapeutic agent for inflammation-related hypoalbuminemia, though additional research is needed to fully validate these results.