Dyslipidemia and inflammation have great roles in the development of diabetic nephropathy (DN). Oleanolic acid (OA) is a natural triterpenoid that possesses multiple pharmacological properties including anti-oxidation, anti-inflammatory and hypoglycemia. In the present study, the effects of OA on diabetic kidney disease (DKD) and its underlying mechanisms were investigated in DKD rats. Twenty-five of a total thirty-five male Sprague-Dawley (SD) rats were used to establish for Type 2 diabetes mellitus (T2DM) model by high-fat diet combined with streptozotocin (STZ). Then rats were randomly assigned into four group: control group (n = 10), T2DM group (n = 9), OA (50 mg/kg) group (n = 7), OA (100 mg/kg) group (n = 8). Rats were sacrificed at the end of 18 weeks after feeding by intraperitoneal injection of pentobarbital sodium. Body weight (BW), fasting blood glucose (FBG), kidney weight (KW), serum lipid, 24-h urinary microalbumin (UMA), serum creatinine (Scr) and uric acid (UA) were measured. Histopathological changes were observed by PAS staining and electron microscope. The expressions of nephrin, CD68, Collagen-IV, AMPK, p-AMPK, PGC-1α, TLR4, NF-κB and TGF-β1 in kidney were also detected by immunohistochemistry or western blot. OA significantly decreased the levels of FBG, kidney index (KI), serum lipid levels, 24 h UMA, Scr, UA in diabetic rats. Additionally, OA obviously attenuated renal lipid accumulation and renal structure abnormalities in diabetic rats. Furthermore, the expression levels of nephrin, p-AMPK/AMPK, PGC-1α were elevated, while CD68, Collagen-IV, TLR4, NF-κB and TGF-β1 expressions were decreased in renal tissues of OA treated diabetic rats. OA showed dose-independent. OA can alleviate renal injury in diabetic rats through improving lipid metabolism and inflammation via AMPK/PGC-1α and TLR4/NF-κB signaling pathway.
Read full abstract