To assess the toxicity of Hexabromocyclododecane (HBCD), the population, individual, and cellular biochemical parameters of the rotifer Brachionus plicatilis exposed to different concentrations of HBCD were investigated. The results showed that the population growth rate, reproductive period, and offspring number in B. plicatilis significantly decreased under 324 μg/L and 648 μg/L HBCD. Antioxidant enzyme activity and mRNA expression of CAT and Mn-SOD were promoted at low concentrations (32 μg/L and 64 μg/L) and inhibited at high concentrations (324 μg/L and 648 μg/L), while MDA content accumulated continuously with increasing HBCD concentrations, indicating that HBCD induced oxidation imbalance in rotifers. Further evidence was provided by the correlation between DNA fragmentation and physiological changes. The increased intercellular concentration of Ca2+ and the expression of CaM mRNA suggested that HBCD activated pathways related to calcium signaling. In summary, the excessive production of ROS induced by HBCD was considered to be the main cause of reproductive toxicity.
Read full abstract