To investigate the effects and molecular mechanisms of wedelolactone (WEL) on high glucose-induced injury of human retinal vascular endothelial cells (HRECs). The cell injury model was established by incubating HRECs with 30 mmol/L glucose for 24 hour. HRECs were divided into control (Con) group, high glucose (HG) group, HG + WEL-low dose (L) group, HG + WEL-medium dose (M), HG + WEL-high dose (H) group, HG + miR-NC group, HG + miR-190 group, HG + WEL + antimiR-NC group, HG + WEL + antimiR-190 group. The kit detects cellular reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) content; cell apoptosis was analyzed by flow cytometry; miR-190 expression was detected by real-time quantitative PCR (RT-qPCR). Compared with Con group, the levels of ROS and MDA in the HG group were significantly increased (P < .01), the SOD activity and the expression of miR-190 expression were significantly decreased (P < .05), and the apoptosis rate was significantly increased (P < .01). Compared with HG group, the levels of ROS and MDA in HG + WEL-L group, HG + WEL-M group and HG + WEL-H group were significantly decreased (P < .05), SOD activity and miR-190 expression were significantly increased (P < .05), and apoptosis rate was significantly reduced (P < .05). Compared with the HG + miR-NC group, the levels of ROS and MDA in HG + miR-190 group were significantly reduced (P < .01), SOD activity was significantly increased (P < .01), and apoptosis rate was significantly reduced (P < .05). Compared with the HG + WEL + antimiR-NC group, the ROS level and MDA content in the HG + WEL + antimiR-190 group were significantly increased (P < .05), SOD activity was significantly decreased (P < .05), and apoptosis rate was significantly increased (P < .05). Wedelolactone can attenuate high glucose-induced HRECs apoptosis and oxidative stress by up-regulating miR-190 expression.