Numerous studies suggest that common genetic and epigenetic factors such as p53, histone deacetylase (HDAC), brain-derived neurotrophic factor (BDNF), the (Ataxia Telangiectasia mutated) ATM gene, cyclin-dependent kinase 5 (CDK5), glycogen synthase kinase 3 (GSK3) and altered expression of microRNA (miRNA) play a crucial role in cancer and neurodegeneration. As there is growing evidence that epigenetic aberrations in cancer and neurological diseases lead to complex pathophysiological changes, the simultaneous targeting of epigenetic and other related pathways by dual-target inhibitors may contribute to the discovery of more effective and personalized therapeutic options. Computer-Aided Drug Design (CADD) provides comprehensive bioinformatic, chemoinformatic, and chemometric approaches for the design of novel chemotypes of epigenetic dual-target inhibitors, enabling efficient discovery of new drug candidates for innovative treatments of these multifactorial diseases. The detailed anticancer mechanisms by which the epigenetic dual-target inhibitors alter metastatic and tumorigenic properties, influence the tumor microenvironment, or regulate the immune response are also presented and discussed in the review. To improve our understanding of the pathogenesis of cancer and neurodegeneration, this review discusses novel therapeutic agents targeting different molecular mechanisms involved in these multifactorial diseases.
Read full abstract