Exosomes (exo) derived from bone marrow mesenchymal stem cells (BMSCs) are known to promote cell growth through delivering multiple kinds of bioactive molecule including microRNAs (miR-NAs). This study aimed to explore the mechanism underlying miR-204 secreted by exo interacting oxidative damage of cardiac stem cell (CSCs). Exosomes were extracted from BMSCs (BMSC-exo) and characterized by immunofluorescence and electron microscope, while BMSC-exo were internalized by CSCs. ARS and ALP staining confirmed the mineralization of BMSCs and osteogenic and adipogenic differentiation of BMSCs. Then BMSCs were cultured in ordinary culture medium (OM) and normal medium. RT-qPCR identified miR-204 level in BMSCs disposed by OM was about five times as that of controls. miR-204 was up-regulated in the osteogenic differentiation of CSCs. Functional experiment revealed up-regulation of miR-204 inhibited the BMSC adipogenic differentiation with decreased ROS and MDA expression and elevated SOD level in the CSCs. Treatment with BMSC-exos or miR-204 up-regulation alleviated oxidative damage of CSCs. Collectively, miR-204 attenuates the oxidative damage of CSCs through regulating BMSC adipogenic and osteogenic differentiation.