Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations. To investigate the interplay and underlying mechanisms between interleukin-35 (IL-35) and Tfr/Tfh2 cells in the context of AR. Experimental animal models employing BALB/c mice and IL-35-deficient mice underwent sensitization and challenge procedures utilizing ovalbumin (OVA) as the antigen in vivo. IL-35 was administered intranasally prior to OVA challenges. Nasal histopathological examination, PBMC isolation, Tfr/Tfh2 cell staining, Tfr/Tfh2 sorting and culture, and qPCR analysis as well as enzyme-linked immunosorbent assay (ELISA) were conducted for exploring the effect of IL-35 on Tfr/Tfh2 cells. Administration of IL-35 suppressed OVA-elicited allergic inflammation in murine models. IL-35 treatment led to an elevation in the proportion of peripheral blood Tfr cells and a decrease in Tfh2 cells. IL-35 also downregulated IL-4 and IL-21 protein expression by Tfh2 cells and upregulated IL-10 and transforming growth factor-β (TGF-β) production by Tfr cells. The anti-ICOS treatment abrogated the effect of IL-35 on Tfh2 and Tfr cells. Our study provided novel insights into the mechanisms of IL-35 action and its promoting effects on Tfh2 and inhibiting effects on Tfr cells by targeting key transcription factors, contributing to the understanding of the pathogenesis and treatment of AR.
Read full abstract