Optical brighteners (OBs) have become an integral part of our daily lives and culture, with a growing number of applications in various fields. Most industrially produced OBs are derived from stilbene, which has been found in environmental matrices. The main objectives for this work are as follows: first, to identify protein targets for DAST, FB-28, and FB-71, and second, to assess their effects in some behaviors physiologic of Caenorhabditis elegans. To achieve the first objective, each OB was tested against a total of 844 human proteins through molecular docking using AutoDock Vina, and affinities were employed as the main criteria to identify potential target proteins for the OB. Molecular dynamics simulations took and validated the best 25 docking results from two protein databases. The highest affinity was obtained for the Hsp70-1/DAST, CD40 ligand/FB-71, and CD40 ligand/FB-28 complexes. The possible toxic effects that OBs could cause were evaluated using the nematode C. elegans. The lethality, body length, locomotion, and reproduction were investigated in larval stage L1 or L4 of the wild-type strain N2. In addition, transgenic green fluorescent protein (GFP) strains were employed to estimate changes in relative gene expression. The effects on the inhibition of growth, locomotion, and reproduction of C. elegans nematodes exposed to DAST, FB-71, and FB-28 OBs were more noticeable with respect to lethality. Moreover, an interesting aspect in OB was increased the expression of gpx-4 and sod-4 genes associated with oxidative stress indicating a toxic response related to the generation of reactive oxygen species (ROS). In all cases, a clear concentration-response relationship was observed. It is of special attention that the use of OBs is increasing, and their different sources, such as detergents, textiles, plastics, and paper products, must also be investigated to characterize the primary emissions of OBs to the environment and to develop an adequate regulatory framework.