Neutrophil lactoferrin (Lf) was previously shown to act as a transcriptional activator in various mammalian cells. Here, we describe that Lf specifically transactivates the p53 tumor suppressor gene through the activation of nuclear factor-kappaB (NF-kappaB) and consequently regulates p53-responsive oncogenes. In HeLa cervical carcinoma cells stably expressing Lf (HeLa-Lf), expression of mdm2 and p21waf1/cip1 as well as p53 was greatly enhanced. Transient expression of Lf also markedly transactivates transcription of a p53 promoter-driven reporter and NF-kappaB-driven reporters in various mammalian cells. However, mutation of the NF-kappaB site or treatment with an NF-kappaB inhibitor abrogated the transactivation, suggesting that NF-kappaB should play an essential role in the Lf-induced transactivation. Increased binding activity and nuclear translocation of p65 in response to Lf strongly support these findings. Furthermore, Lf-mediated NF-kappaB activation is diminished in IKKalpha- or IKKbeta-deficient mouse embryonic fibroblast cells. The activation of both IKKs and NF-kappaB by Lf is over-ridden by the expression of dominant-negative mutants of NIK, MEKK1, IKKalpha and IKKbeta. Collectively, we conclude that overexpressed Lf directly relays signals to upstream components responsible for NF-kappaB activation, thereby leading to the activation of NF-kappaB target genes.