This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on inflammatory responses and intestinal health of lipopolysaccharide (LPS)-challenged broilers. One hundred and forty-four 1-day-old male broiler chicks were divided into 3 groups with 6 replicates of 8 birds each. The groups were as follows: 1) Control group: birds fed a basal diet; 2) LPS group: LPS-challenged birds fed a basal diet; 3) CGA group: LPS-challenged birds fed a CGA-supplemented diet. The LPS was intraperitoneally administered at a dose of 1 mg/kg of body weight. CGA increased the weight gain and feed intake of LPS-challenged birds by 37.05% and 24.29%, respectively (P < 0.05). CGA also alleviated LPS-induced inflammation, as evidenced by lower levels of pro-inflammatory cytokines in the serum and jejunum (tumor necrosis factor-α, interferon-γ, interleukin-1β, and interleukin-6), and the decreased myeloperoxidase activity in the jejunum (P < 0.05). These effects were accompanied by a decrease in the mRNA abundance of toll-like receptor 4 and myeloid differentiation factor 88 and an inhibition of nuclear factor kappa-B translocation in the jejunum (P < 0.05). CGA reduced circulating diamine oxidase activity and levels of D-lactate and endotoxin, and positively regulated the expression of jejunal claudin-3 and zonula occludens-1 in LPS-challenged broilers (P < 0.05). Compared to the LPS group, CGA reduced the apoptotic rate of epithelial cells and cytochrome c concentration in the jejunum, and normalized the expression of genes responsible for proliferation and apoptosis in jejunal epithelial cells, including cysteine aspartate-specific protease-9, B cell lymphoma-2, and proliferating cell nuclear antigen (P < 0.05). Furthermore, CGA normalized the altered phosphorylation of protein kinase B and glycogen synthase kinase-3β, as well as the translocation of nuclear β-catenin in the jejunum of LPS-challenged broilers (P < 0.05). These results suggested that CGA supplementation improved growth performance, alleviated inflammation, and helped maintain intestinal integrity and barrier function in LPS-challenged broilers, possibly through the regulation of the toll-like receptor 4/nuclear factor kappa-B and protein kinase B/Wnt/β-catenin pathways.