A disintegrin and metalloprotease 10 (ADAM10) is a transmembrane protein associated with metastasis in a number of types of cancer. Little is known, however, regarding the role of ADAM10 in hepatocellular carcinoma (HCC). The aim of the present study was to evaluate whether downregulation of ADAM10 effects HCC cell proliferation, cell cycle, cell migration and cell invasion. A recombinant small hairpin RNA expression vector carrying ADAM10 was constructed and then transfected into the HepG2 human HCC cell line. In vitro cell proliferation, cell cycle, cell migration and cell invasion, and in vivo tumor growth were determined following the downregulation of ADAM10 by RNA interference. The results revealed that downregulation of ADAM10 expression in HepG2 tumor cells using the RNA silencing approach significantly suppressed cell proliferation, cell migration and cell invasion in vitro, and tumor growth in vivo. Furthermore, ADAM10 silencing was able to significantly reduce constitutive phosphorylation of phosphoinositide 3-kinase (PI3K) and Akt, which implies that ADAM10 is, at least partially, involved in the activation of the PI3K/Akt signaling pathway. These results suggest that ADAM10 is important in regulating the proliferation and metastasis of HCC. Thus, ADAM10 is a promising therapeutic target for the prevention of tumor metastases in HCC.