BackgroundDespite a large amount of evidence showing the involvement of microRNA-132 (miR-132) in the occurrence and prognosis of many different types of cancer, the role of miR-132 in ovarian cancer and its potential molecular mechanism have yet to be fully explained.MethodWe studied the biological function and molecular mechanism of miR-132 in ovarian cancer cell lines and clinical tissue samples using quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, Luciferase reporter assay, CCK8 test, colony formation test, and scratch and Transwell assays.ResultsThe expression level of miR-132 was significantly reduced in ovarian cancer cell lines and clinical tissue samples. When the level of miR-132 was increased, the proliferation, colony-forming, migration, and invasion abilities of ovarian cancer cells were significantly inhibited. We found that miR-132 inhibits the expression of transcription factor CT10 Oncogenic Gene Homologue II (CRKII) through specific targeting of mRNA 3'-UTR. We also observed a significant increase in CRKII expression in ovarian cancer. Notably, CRKII expression was negatively correlated with miR-132 expression in clinical ovarian cancer tissue. Down-regulation of CRKII had a similar inhibitory effect on miR-132 overexpression in ovarian cancer cells, while excessive expression of CRKII reversed the inhibitory effect mediated by the excessive expression of miR-132.ConclusionsmiR-132 inhibits the proliferation, invasion, and migration abilities of ovarian cancer cells through targeting CRKII.