Lung cancer is recognized as a leading cause of cancer-related deaths worldwide. Over the past several years, evidence emerged that microRNAs (miRNAs), a class of small non-coding RNA molecules regulating gene expression at posttranscriptional level, play an important role in cell functioning, as well as in human diseases. Here, we analyzed expression of miR-15a/16, miR-21, miR-34a, miR-126, miR-128, and miR-210 at transcriptional level in 30 non-small-cell lung carcinoma (NSCLC) tumor tissues compared to the matched adjacent normal tissues and their correlation with clinicopathological features of the patients. Samples were collected from the NSCLC patients undergoing surgery before radiotherapeutic or chemotherapeutic treatment. Expression levels of miRNAs were assessed by TaqMan RT-PCR assay. The data obtained in this study were processed using REST 2009 and SPSS statistical software. The graphs were designed by GraphPad prism 5.0. In tumor samples, we found downregulation of miR-15a/16 (50/83.3%), miR-34a (83.3%), miR-126 (70%), and miR-128 (63.3%). At the same time, miR-21 and miR-210 were upregulated by 53.3 and 66.6% in cancer tissue versus matched adjacent normal tissues, respectively. No significant correlation was found between the expression levels of miR-15a/16, miR-21, miR-34a, miR-126, miR-128, and miR-210 and lymph node, tumor size, sex, and smoking. However, the study demonstrated a correlation between a change in expression of miR-15, miR-16, miR-34a, miR-126, and miR-210 compared to normal tissues and TNM staging (P < 0.05). Furthermore, miR-126 expression level was different in adenocarcinomas and squamous cell carcinoma (SCC) subtype (P < 0.1). Detailed analysis revealed significant change in expression of miR-15a/16, miR-34a, miR-126, and miR-210 in NSCLC tumor samples indicating involvement of these miRNAs in lung cancer pathogenesis. miR-210 demonstrated the most consistent increase in tumor tissues between different patients, suggesting its potential significance for NSCLC.