Class III peroxidase (PRX) is the key enzyme in lignin biosynthesis and critical for maintaining the redox balance in plants to respond to stress. In moso bamboo (Phyllostachys edulis), a globally significant non-timber forestry species, the potential roles of PRX genes remain largely unknown. In this research, a total of 179 PePRXs was identified on a genome-wide scale in moso bamboo. Phylogenic relationship, conserved motifs, gene structure, collinearity, and cis-acting elements were investigated. Analysis of gene expression indicated that PePRXs exhibited tissue-specific expression and different response patterns to hormones and abiotic stresses. Based on the transcriptome data, ten PePRXs with positive correlations between expression levels and lignification degree were screened out. Among them, PePRX2 was selected as a candidate gene according to the co-expression network. Y1H and Dual-Luc assays demonstrated that PeMYB61 could bind to the promoter of PePRX2 and enhance its transcription. The result of in situ hybridization showed that PePRX2 was specifically expressed in the vascular bundle sheath cells of bamboo shoot. As a secreted protein, PePRX2 was located on the cell wall. Overexpression of PePRX2 led to a significant increase in lignin content in transgenic poplar, indicating that PePRX2 could promote lignin polymerization. In comparison to the wild type, the PePRX2-OE poplar lines exhibited increased peroxidase activity and decreased levels of MDA, O2-, and H2O2 under drought stress, indicating enhanced drought resistance. This thorough analysis of the PRX family in moso bamboo provided new insight into the roles of PePRXs in lignin biosynthesis and drought adaptation.
Read full abstract