Experiences of parents and/or offspring are often assumed to affect the development of trait values in offspring because they provide information about the external environment. However, it is currently unclear how information from parental and offspring experiences might jointly affect the information-states that provide the foundation for the offspring phenotypes observed in empirical studies of developmental plasticity in response to environmental cues. We analyze Bayesian models designed to mimic fully-factorial experimental studies of trans and within- generational plasticity (TWP), in which parents, offspring, both or neither are exposed to cues from predators, to determine how different durations of cue exposure for parents and offspring, the devaluation of information from parents or the degradation of information from parents would affect offspring estimates of environmental states related to risk of predation at the end of such experiments. We show that the effects of different cue durations, the devaluation of information from parents, and the degradation of information from parents on offspring estimates are all expected to vary as a function of interactions with two other key components of information-based models of TWP: parental priors and the relative cue reliability in the different treatments. Our results suggest empiricists should expect to observe considerable variation in the patterns observed in experimental studies of TWP based on simple principles of information-updating, without needing to invoke additional assumptions about costs, tradeoffs, development constraints, the fitness consequences of different trait values, or other factors.