Nitrogen dioxide (NO2) is an air pollutant highly impacting on human health, and its measurement is crucial for air quality assessment. Use of passive samplers for long-term large-scale monitoring is a reasonably reliable and economic alternative to more sophisticated and expensive equipment employed in active air sampling by environmental control authorities. In recent years the Citizen Science approach, based on low-cost devices, is spreading more and more in environmental control. Passive samplers available on the market (like the consolidated “Palmes” tubes) are often used in community-based monitoring campaigns. We describe validation of a new cheap axial diffusion tube for NO2 monitoring, used in combination with a new user-friendly App for smartphone that represents an innovation to speed up recording of geo-localization and exposition period data. Affordability and availability of materials, simple construction protocol and easy App procedure, allow possible self-production by school students and non-expert users, making the proposed tube a potential tool to realize extended Citizen Science monitoring campaigns. Accuracy within 25% and precision within 20%, evidenced in validation, show comparability of the tube performance with Palmes-type tubes and agreement with the official monitoring station results. Two small-scale trial monitoring campaigns, involving high school students, were performed to test the efficacy of the proposed “tube-App” system in combining educational impact and community value of air quality monitoring.
Read full abstract