AbstractCoastal drainages contain multiple sources of dissolved organic matter (DOM) that influence OM transformation and fate along inland‐to‐marine gradients. Anthropogenic activities have altered DOM composition in urban drainages, thereby influencing in‐stream breakdown rates, primary productivity, and downstream export. Yet, it is uncertain how hydrologic conditions (i.e., rainfall, tides, shallow groundwater) interact with different sources of DOM to regulate the transformation and export of DOM through urban coastal drainages. We characterized how seasonal changes in hydrologic conditions influence DOM composition and bioavailability in tidally influenced drainages in Miami, FL, USA. We estimated the quality and bioavailability of DOM using compositional proxies based on fluorescence spectroscopy, including parallel‐factor analysis, and measured dissolved organic carbon degradation during laboratory incubations containing a local bacterial community. Interactions between stormwater runoff and tidal amplitude increased the bioavailability of DOM and were positively correlated with predominantly humic‐like components in the wet season and protein‐like components in the dry season. Further, increases in tryptophan fluorescence intensity corresponded with elevated concentrations of Escherichia coli and enterococci—likely from waste‐impacted groundwater—and contributed substantially to overall DOM bioavailability. Our results provide new evidence of an urban priming effect in which labile autochthonous DOM from anthropogenic sources facilitates microbial degradation of DOM that is driven by seasonal differences in stormwater runoff and tides. As hydrologic conditions in near‐shore aquatic ecosystems shift with urbanization and climate‐driven changes in sea‐level rise, increases in autochthonous sources of bioavailable DOM may impact ecosystem metabolism and affect the quality of DOM exported downstream.
Read full abstract